G
gaga2410
Nouveau
Bonjour à tous,
Je cherche à déterminer la valeur de la résistance de saignement de mon alim.
Tension de sortie : 42 V
Intensité : 11,8 A
Condensateur de filtrage : 56 000 uF
Mon approche : partir du stock de résistance en ma possession pour voir laquelle ferait l'affaire.
J'ai pu trouver une formule permettant de calculer le temps de décharge d'un condensateur : T (constante de temps)= R (en ohm) x C (en farads). Au bout de 5 fois cette constante de temps on estime que le condo est déchargé.
Ce qui me gêne, ce n'est pas le calcul en lui même. En fait, dans les info que j'ai pu trouver, aucune n'indique les effets d'une décharge trop rapide ou trop lente.
En clair, ce que je souhaite savoir : comment savoir si le temps de décharge que l'on calcule est correct ? Faut-il respecter un temps maxi ou un temps mini ?
Ce 1er calcul vous paraît-il convenir :
C = 56000 uF R = 330 ohm
330 x 0,0560 = 18,48 s
18,48 x 5 = 92,4 s
Avec une résistance de 330 ohm le condensateur sera déchargé au bout de 92,4 secondes soit 1 m 32s environ.
Merci pour votre aide.
Je cherche à déterminer la valeur de la résistance de saignement de mon alim.
Tension de sortie : 42 V
Intensité : 11,8 A
Condensateur de filtrage : 56 000 uF
Mon approche : partir du stock de résistance en ma possession pour voir laquelle ferait l'affaire.
J'ai pu trouver une formule permettant de calculer le temps de décharge d'un condensateur : T (constante de temps)= R (en ohm) x C (en farads). Au bout de 5 fois cette constante de temps on estime que le condo est déchargé.
Ce qui me gêne, ce n'est pas le calcul en lui même. En fait, dans les info que j'ai pu trouver, aucune n'indique les effets d'une décharge trop rapide ou trop lente.
En clair, ce que je souhaite savoir : comment savoir si le temps de décharge que l'on calcule est correct ? Faut-il respecter un temps maxi ou un temps mini ?
Ce 1er calcul vous paraît-il convenir :
C = 56000 uF R = 330 ohm
330 x 0,0560 = 18,48 s
18,48 x 5 = 92,4 s
Avec une résistance de 330 ohm le condensateur sera déchargé au bout de 92,4 secondes soit 1 m 32s environ.
Merci pour votre aide.